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Abstract. In this paper, we present a novel framework to incorporate
bottom-up features and top-down guidance to identify salient objects
based on two ideas. The first one automatically encodes object location
prior to predict visual saliency without the requirement of center-biased
assumption, while the second one estimates image saliency using contrast
with respect to background regions. The proposed framework consists of
the following three basic steps: In the top-down process, we create a spe-
cific location saliency map (SLSM), which can be identified by a set of
overlapping windows likely to cover salient objects. The binary segmen-
tation masks of training windows are treated as high-level knowledge to
be transferred to the test image windows, which may share visual sim-
ilarity with training windows. In the bottom-up process, a multi-layer
segmentation framework is employed, which is able to provide vast ro-
bust background candidate regions specified by SLSM. Then the back-
ground contrast saliency map (BCSM) is computed based on low-level
image stimuli features. SLSM and BCSM are finally integrated to a pixel-
accurate saliency map. Extensive experiments show that our approach
achieves the state-of-the-art results over MSRA 1000 and SED datasets.

1 Introduction

The human visual system (HVS) has an outstanding ability to quickly detect the
most interesting regions in a given scene. In last few decades, the highly effec-
tive attention mechanisms of HVS have been extensively studied by researchers
in the fields of physiology, psychology, neural systems, image processing, and
computer vision [1–8], The computational modeling of HVS enables various vi-
sion applications, e.g., object detection/recognition [9, 10], image matching [2,
11], image segmentation [12], and video tracking [13].

Visual saliency can be viewed from different perspectives. Top-down (su-
pervised) and bottom-up (unsupervised) are two typical categories. The first
category often describes the saliency by the visual knowledge constructed from
the training process, and then uses such knowledge for saliency detection on the
test images [14, 15]. Based on the biological evidence that the human visual at-
tention is often attracted to the image center [16], the center-biased assumption
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Fig. 1. Our approach consists of two components: (1) Top-down process. Given the
training data consists of images with annotated binary segmentation masks, we first
employ the technique of [9] to detect windows likely to contain salient objects on all
training images and testing images. Then the binary segmentation masks of training
windows are transferred to each detective windows in testing image with the most
similar appearance (window neighbours). The transferred segmentation masks are used
to derive the specific location saliency map (SLSM); (2) Bottom-up process. Using the
over-segmentation technique of [25], an input testing image is first partitioned to multi-
layer segmentation in a coarse to fine manner. Given the SLSM as prior map, a set of
robust background regions are abstracted, and then the color-based contrast saliency
maps are created for each layer of segmentation. These saliency maps are combined
to form our background contrast saliency map (BCSM). SLSM and BCSM are finally
integrated to a pixel-accurate saliency map. (Best viewed in color)

is often employed as the location prior for estimating visual saliency in top-down
models [17, 15].

While the salient regions are mostly located in the image center, the inverse
might not necessarily be true [18, 19]. Not all image center regions tend to be
more salient. The salient object might be located far away from image center,
even on the image boundary. Furthermore, a center-biased assumption always
supposes that there is only one salient object within each image, yet it often
fails when nature image contains two or more salient objects [19]. Thus, to
detect salient regions without center-biased constrains, some semantic knowledge
(e.g., face and pedestrian) are integrated in a top-down process, which is mostly
based on object detectors [14, 20, 17]. The integration, however, acts rather more
general on object category level than at the saliency-map level.

On the other hand, the bottom-up models are mainly motivated from the con-
trast formulation. For example, Itti et al. [1, 21] proposed a set of pre-attentive
features including local center-surround intensity, color and direction contrasts.
These contrasts were then integrated to compute image saliency through the
winner-take-all competition. Cheng et al. [22] and Achanta et al. [23] utilize
the global contrast with respect to the entire scene to estimate visual saliency.
Recently, Borji and Itti [24] combine local and global patch rarities as contrast
to measure saliency for eye-fixation task. We argue that the contrast based on
background regions also plays an important role in such processes.
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In this paper, we propose a novel method to integrate bottom-up, lower-
level features and top-down, higher-level priors for salient object detection. Our
approach is fully automatic and requires no center-biased assumption. The key
idea of our top-down process is inspired by [26], where the binary segmentation
masks are treated as prior information to be transferred from the supervised
training image set to the testing image set. Then, the transferred segmentation
masks are used to derive specific location prior of salient object in the test image.

Figure 1 illustrates the overview of our method. The basic intuition is that
the windows with similar visual appearance often share similar binary segmen-
tation masks. Since these transferred windows exhibit less visual variability than
the whole scenes and are often centered on the salient regions, they are much
suitable for location transfer with better support regions. As a result, we utilize
the method of [9] to extract candidate windows that are likely to contain salient
objects, and then transfer training window segmentation masks that share vi-
sual similarity to windows in the test image. Afterwards, the bottom-up saliency
map is computed based on low-level image stimuli features. In nature images,
although the salient regions and backgrounds may also tend to be perceptually
heterogeneous, the appearance cues (e.g., color and texture) of the salient object
region are still quite different from the backgrounds. Therefore, different from the
previous methods that mainly utilize the local central-surround contrast [1, 15,
24] and global contrast [23, 22, 27] to encode saliency, our framework estimates
visual saliency using the appearance-based contrast with respect to the back-
ground candidate regions. In order to automatically abstract robust background
regions, we employ the multi-layer segmentation framework, which is able to
provide large amount of background candidates within different sizes and scales.

The contributions of our approach are three-fold:
(1) In the top-down process, it proposes a specific location prior for salient

object detection. Through window mask transferring, our method is able to
provide more accurate location prior to detect salient regions, which results in
more accurate and reliable saliency maps than the models using center-biased
assumptions, such as [16] and [17];

(2) In the bottom-up process, unlike the previous approaches that utilize the
local and global contrast to predict visual saliency, we attempt to estimate visual
saliency using the contrast with respect to the background regions;

(3) Compared with most competitive models [1, 22, 14, 28, 17, 23, 18, 29, 27,
30, 31], our method achieves the state-of-the-art results over MSRA 1000 and
SED datasets.

2 Related Work

In this section, we focus on reviewing the existing work for salient object de-
tection, which can be roughly classified into two categories: bottom-up and top-
down models.

The bottom-up approaches select the unique or rare subsets in an image as
the salient regions [1, 32, 28, 33]. As a pioneer work, Itti et al. [1] introduced
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a biologically inspired saliency model based on the center-surround operation.
Graph-based models [29, 34] are suggested to predict saliency following the prin-
ciple of Markov random walk theory. Some researchers attempt to detect irregu-
larities as visual saliency in the frequency domain [27, 23, 35]. Bruce and Tsotsos
[36] established a bottom-up model following the principle of maximizing in-
formation sampled from a scene. Sparsity models [37, 17] are also employed to
encode saliency, where the salient regions are identified as sparse noises when
recovering the low-rank matrix.

Despite the success of these models, they are difficult to generalize to real-
word scenes. Instead, some researchers attempt to incorporate the top-down pri-
ors for salient object detection [15, 10, 20]. Li et al. [38] and Ma et al. [39] formu-
late the top-down factors as high level semantic cues (e.g., faces and pedestrian).
Alternatively, Navalpakkam and Itti [40] modeled the top-down gain optimiza-
tion as maximizing the signal-to-noise ratio (SNR). Liu et al. [15] proposed to
adopt a conditional random field (CRF) model for predicting visual saliency.
Bayesian modeling is also used for combining sensory evidence with prior con-
strains. In these models, the prior knowledge (such as scene context [14] or gist
descriptors [41]) and sensory evidence (such as target features [42]), are proba-
bilistically combined according to Bayesian rule. Different from these methods,
our method employs the specific location prior as top-down knowledge by trans-
ferring window segmentation masks.

3 Our Approach

In this section, we elaborate on the details of our method. We first introduce
how to obtain the specific location saliency map (SLSM) by transferring win-
dow masks. Given the multi-layer segmentations and SLSM on hand, we select
a series of background regions that are used to compute background contrast
saliency map (BCSM). Finally, two maps are incorporated to generate pixel-
wised saliency.

3.1 Specific Location Saliency Map (SLSM)

Finding Similar Windows. In order to utilize the prior knowledge of anno-
tated binary segmentation mask in the training set, we first detect windows
likely to contain an object using the ”objectness” technique of [9]. It tends to re-
turn more windows covering an object with a well-defined boundary, rather than
amorphous background elements. In our experiments, sampling only N windows
per image (e.g., N = 100) seems enough to cover most salient objects. Putting
all the training windows together, we obtain the training window set {Wt}. This
leads to retrieving much better neighborhood windows with similar appearance,
whose segmentation masks are more suitable to transfer for test image. Given
a new test image I as illustrated in Figure 2(a), the N number of “objectness”
windows are also extracted using [9] as well as for the training images. Figure
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(a) Test image I (b) Windows Wk of I (c) Windows neighbors in training windows 
{Wt} and corresponding binary map {Sk}

(d) Window 
soft masks (Mk) (e) SLSM

red

green

blue

Fig. 2. An example of the full pipeline for producing SLSM. Given a test image I in (a),
three top windows (denoted as red, green and blue rectangles) are highlighted out of N
windows, as shown in (b). The window neighbors are displayed in (c). It is shown that
green window is tightly centered on an object and gets very good neighbors, while for
red and blue windows, the neighbors are good matches for transferring segmentation
mask, even though these windows do not cover the ”horse” perfectly. This results in
an accurate transfer mask for each window of I, as illustrated in (d). On the rightmost
column of (e), we integrate the soft mask Mk from all windows into a soft mask for the
whole scene, which is used to derive the SLSM. Note blue color denotes low saliency,
while red color represents high saliency (Best viewed in color)

2(b) shows top three ”objectness” windows in the test image I, and it is ob-
served that many detective windows are centered on the salient object “horse”.
For one specific test window Wk, k = {1, 2, · · · ,N}, we compute GIST feature
[43] inside Wk to describe its appearance, and compare GIST descriptors with
the `2-norm distance to all training windows {Wt} to find window neighbors.
Thus, the set {Sjk}, j = {1, 2, · · · ,M} containing the segmentation masks of the
topM training windows most similar to Wk is used for transferring. Figure 2(c)
illustrates that the nearest neighbor windows accurately depict similar animals
in similar poses, resulting in well-matched binary segmentation masks.
Segmentation Transfer. Let ST (x, y) be the SLSM, which defines the prob-
ability of pixel at location (x, y) to be salient. We construct ST (x, y) for each
pixel from the segmentation masks transferred from all windows containing it.

1) Soft masks for windows. For the kth test window Wk, we have a set of
binary segmentation masks {Sjk} of neighbor windows from the training set. Here
we compute a soft segmentation mask Mk for each Wk as the pixel-wise mean of
the masks in {Sjk}. To this end, all masks in {Sjk} are resized to the resolution

of Wk. Let {Sj
′

k } be the resized masks, then the soft mask Mk for window Wk

is defined as:

Mk =
1

M

M∑
j′=1

Sj
′

k (1)

In this aligned space, a pixel value in Mk corresponds to the probability for it

to be a salient object in {Sj
′

k }. Figure 2(d) shows the corresponding Mk for the
detected windows. Note the resolution of each soft window mask Mk is the same
as the one of detected window in Figure 2(b).

2) Soft mask for the test image. After obtaining soft masks Mk, we integrate
Mk for all windows into a single soft segmentation mask M(x, y) for the test
image I. For each window Wk, we place its soft mask Mk at the image location
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Fig. 3. Illustration of SLSM. The first and third rows are the example images form
MSRA 1000 and SED dataset, respectively. The second and fourth rows are the corre-
sponding SLSM, where blue color denotes low saliency, while red color represents high
saliency. (Best viewed in color)

(x, y) defined by Wk. The soft mask M(x, y) of the test image is the pixel-wise
mean of all N placed masks Mk(x, y):

M(x, y) =
1

N

N∑
k=1

Mk(x, y) (2)

A pixel value in M(x, y) is the probability for it to be salient, according to all
transferred segmentations (as illustrated in Figure 2(d)). Therefore, we define
the SLSM ST (x, y) as

ST (x, y) = M(x, y) (3)

Due to the integration of all soft segmentation masks Mk(x, y) from the indi-
vidual windows, our approach achieves even more robust results. The key step of
our approach is that we extract many windows (e.g., 100 per image) overlapping
salient object. One effect is that a certain window might not have good neighbors
in the training set, leading to transferring an inaccurate or even completely in-
correct mask Mk(x, y). However, other overlapping windows will probably have
good neighbors, diminishing the effect of the inaccurate Mk(x, y) in the integra-
tion step. Another effect may happen when the transferred windows may not
cover a salient object, (e.g., detecting a patch on the backgrounds, as the blue
window shown in Figure 1). This does not pose a problem to our approach, as
the training images are decomposed in the same type of windows [9]. Therefore,
a background window will probably also has similar appearance neighbors on
backgrounds in the training images, resulting in correctly transferring a back-
ground binary segmentation mask. As a result, our approach is fully symmetric
over salient and background windows. Figure 3 exhibits some SLSMs of nature
images over MSRA 1000 and SED datasets.
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Fig. 4. Image representation by multi-layer segmentation. The upper panel shows the
examples from MSRA dataset, while the bottom panel illustrates the examples from
SED dataset. From left to right are the original images and their over-segmentation
results in a coarse to fine manner. Different segments are separated by white boundaries.

3.2 Background Contrast Saliency Map (BCSM)

No matter where the salient object locates, it often exhibits quite different ap-
pearance cues (e.g., color and texture) within the entire scene. We thus build
our background contrast saliency map (BCSM) guided by the global color-based
contrast measurement [22]. Instead of computing saliency based on an entire
image, here we calculate the contrast based on background candidates.
Multi-layer Segmentation. In order to make full use of background candidate
regions, we employ the multi-layer segmentation framework.

Traditionally, an image is typically represented by a two-dimensional array
of RGB pixels. With no prior knowledge of how to group these pixels, we can
compute only local cues, such as pixel colors, intensities or responses to convo-
lution with bank of filters [44, 45]. Alternatively, we use the SLIC algorithm [25]
to implement over-segmentation, since it performs more efficiently. In practice,
we partition test image I into J layers of segmentations. There are two parame-
ters to be tuned for this segmentation algorithm, namely (rgnSize, regularizer),
which denote the number of segments used for over-segmentation and the trade-
off appearance for spatial regularity, respectively. As shown in Figure 4, the
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advantages of using this technique are that it can often group the homogeneous
regions with similar appearance and preserve the true boundary of objects.

Computing BCSM. Denote SB(x, y) as the BCSM to convey a sense of the
dissimilarity of a pixel based on its local feature with respect to backgrounds, so
that SB(x, y) also gives the probability of pixel at location (x, y) to be salient.
We construct SB(x, y) for each pixel from the multi-layer segmentation via all
segments containing it.

1) Color contrast saliency for each layer segmentation. Let rji be ith specific
segment in jth layer of segmentation. According to the SLSM, we select the
segments with low saliency value to be background candidates, which are ready
to compute the color-based contrast saliency. Let Bj = {Bj1, B

j
2, · · · , B

j
M} be

selected background candidate regions in jth layer segmentation. To measure
how distinct the salient region is with respect to Bjm ∈ Bj , we can measure the
distance between rji and Bjm using various visual cues such as intensity, color,
and texture/texton. In this paper, we use the inverse cosine distance between
histograms of HSV space to compute the color-based contrast:

Cji,m(H(rji ),H(Bjm)) = 1− H(rji )
TH(Bjm)

||H(rji )|| · ||H(Bjm)||
(4)

where H(·) is the binned histogram calculated from all color channels of one
segment, and || · || denotes the `2 norm. We use histograms because they are a
robust global description of appearance. They are insensitive to small changes in
size, shape, and viewpoint. From Equation (4), it is observed that the contrast
between rji and Bjm is very low when they look similar, otherwise not. For the

given segment rji , its color contrast saliency SB(rji ) is computed as the mean of

L smallest contrasts in {Cji,m(·, ·)},m = 1, 2, · · · ,M

SB(rji ) =
1

L

L∑
m=1

Cji,m(·, ·) (5)

As will be seen, when rji is truly a salient region, the L smallest contrasts always
get large value with respect to the background regions, resulting in high saliency
for SB(rji ). The saliency map SB(rji ) is normalized to a fixed range [0, 255], and

SB(rji ) is assigned to each image pixel belonging to rji with the saliency value

as SjB(x, y).

2) BCSM for testing image. We now incorporate the SjB(x, y) for all segmen-
tation layers into a single saliency map for the test image I. Then the BCSM
SB(x, y) is defined as:

SB(x, y) =
1

J

J∑
j=1

SjB(x, y) (6)

SB(x, y) is also normalized to a fixed range [0, 255].
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3.3 Combined Saliency

We integrate SLSM and BCSM to produce our final saliency map S(x, y) with
a linearly combination model

S(x, y) = η · ST (x, y) + (1− η) · SB(x, y) (7)

where η is the harmonic parameter to balance the top-down SLSM and bottom-
up BCSM. Then S(x, y) is normalized to a fixed range [0, 255].

4 Experimental Results

To validate our proposed method, we carried out several experiments on two
benchmark datasets using the Precision-Recall curve and F-measure described
below. The main reason behind employing several datasets is that current datasets
have different image and feature statistics, stimulus varieties, and center-biases.
Hence, it is necessary to employ several datasets as models leverage different
features that their distribution varies across datasets.

Datasets. We test our proposed model on two datasets: (1) Microsoft Research
Asian (MSRA) 1000 dataset [23] is the most widely used and as baseline bench-
mark for evaluating salient object detection models. It contains 1000 images
with resolution of approximate 400 × 300 or 300 × 400 pixels, which only have
one salient object per image and provides accurate object-contour-based ground
truth. (2) The SED [19] dataset is a smaller dataset only containing 100 images
with resolution ranged from 300×196 to 225×300 pixels. The reason to employ
this dataset lies in that it is not center-biased and there are two salient objects
in each image. Therefore, this dataset is more challenging for the task of salient
object detection.

Baselines. To show the advantages of our method, we selected 12 state-of-the-
art models as baselines for comparison, which are spectral residual saliency (SR
[27]), spatiotemporal cues (LC [31]), visual attention measure (IT [1]), graph-
based saliency (GB [29]), frequency-tuned saliency (FT [23]), salient region de-
tection (AC [30]), context-aware saliency (CA [14]), global-contrast saliency (HC
and RC [22]), saliency filter (SF [28]), low rank matrix recovery (LR [17]), and
geodesic saliency (SP [18]). In practice, we implemented all the 12 state-of-the-
art models using a Dual Core 2.6 GHz machine with 4GB memory over two
datasets to generate saliency maps.

Evaluation Metrics. In order to quantitatively evaluate the effectiveness of our
method, we conducted experiments based on the following widely used criteria.
The precision-recall curve (PRC) is used to evaluate the similarity between the
predicted saliency maps and the ground truth. Precision corresponds to the per-
centage of salient pixels correctly assigned, while recall corresponds to the frac-
tion of detected salient pixels in relation to the ground truth number of salient
pixels. Another criterion to evaluate the overall performance is the F-measure
[23, 22], which is used to weight harmonic mean measurement of precision and
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Fig. 5. Quantitative comparison for all algorithms with naive thresholding of saliency
maps using 1000 publicly available benchmark images. Left and middle: PRC of our
method compared with CA [14], AC [30], IT [1], LC [31], SR [27], GB [29], SF [28], LR
[17], FT [23], SP [18], HC and RC [22]. Right: Average precision, recall and F-measure
with adaptive-thresholding segmentation. Our method shows high precision, recall, and
Fβ values on the MSRA 1000 dataset. (Best viewed in color)

recall. The F-measure is defined as

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

(8)

where β2 = 0.3 following [23, 22].
Implemented Details. In order to make our approach work well, it is im-
portant to establish a large and diverse training set, which is able to provide
sufficient appearance statistics to distinguish salient regions and background. In
our implementation, we employ the full PASCAL VOC 2006 [46] as our train-
ing dataset, since it includes more than 5000 images with accurate annotated
object-contour-based ground truth.

The parameter settings are: N = 100 for sampling windows per image,M =
100 for window neighbors for one sampling window, J = 5 for segmentation
layers in a coarse to fine manner, L = 5 for computing color contrast saliency
involved in Equation (5), (rgnSize, regularizer) are initialized as {25, 10}, and
rgnSize is updated as {25, 50, 100, 200, 400} with fixed regularizer, η = 0.6 to
balance SLSM and BCSM for producing final saliency map.

We follow two widely used methodologies [23, 17] to implement our exper-
iments. In the first implementation, we adopt the scheme that segments im-
age according to the saliency values with a fixed threshold. Given a threshold
T ∈ [0, 255], the regions whose saliency values are higher than threshold are
marked as a salient object. The segmented image is then compared with the
ground truth to obtain the precision and recall. We draw the PRC using a series
of precision-recall pairs by varying T from 0 to 255.

In the second implementation, the test image is segmented by an adaptive
threshold method [17]. Given the over-segmented image, an average saliency is
calculated for each segment. Then an overall mean saliency value over the entire
image is obtained as well. If the saliency in this segment is larger than twice of
the overall mean saliency value, the segment is marked as foreground. Precision
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(a) image (b) AC (c) CA (f) IT(e) GB(d) FT (g) LC (i) HC(h) SR (m) SF(j) RC (n) Ours (o) GT(k) SP (l) LR

Fig. 6. Visual comparison of previous approaches with our method. See the legend of
Figure 5 for the references to all methods.

and recall values are sequentially calculated, and F-measure is finally computed
for evaluation.

Overall Results. The average PRC and F-measure on MSRA 1000 dataset
are illustrated in Figure 5. It clearly shows that our method outperforms other
approaches. It is interesting to note that the minimum recall value of our methods
starts from 0.08, and the corresponding precision is higher than those of the other
methods, probably because the saliency maps computed by our methods contain
more pixels with the saliency value 255. The improvement of recall over other
methods is more significant, which means our method are likely to detect more
salient regions, while keeping a high accuracy.

We also evaluate our method on SED dataset and compare it with other 12
models. Figure 7(a) reports the comparison results in terms of F-measure. Our
method achieves the state-of-the-art results and higher F-measure value (ours
= 0.763) than other competitive models (SF = 0.739, LR = 0.68, RC = 0.62,
and HC = 0.60), which clearly shows the validity of our approach in the case of
more than one salient object within each image.

Visual comparison with different methods on MSRA 1000 dataset are shown
in Figure 6, and some qualitative results on SED dataset are displayed in Figure
8. Compared with other models, our method is very effective in eliminating
the cluttered backgrounds, and uniformly highlighted salient regions with well-
defined object shapes, no matter whether salient objects locate in image center,
or far away from image center, even on the image boundary.

Analysis of Implemental Efficiency. In order to evaluate the implemental
efficiency of our method, we compare the average running time with some com-
petitive models, and report the results in Table 1. Our method is slower than
HC and FT, and faster than SR, IT, GB, SP, SF, RC, LR. The majority of this
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Table 1. Average running time of different methods on MSRA 1000 dataset.

Method SR [27] IT [1] GB [29] FT [23] SP [18]

Time(s) 0.064 0.611 1.614 0.016 1.213

Code Matlab Matlab Matlab C++ Matlab

Method HC [22] RC [22] SF [28] LR [17] ours

Time(s) 0.019 0.253 0.153 1.748 0.759

Code C++ C++ C++ Matlab Matlab
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Fig. 7. Left: From left to right: (a) F-measure of the different saliency models to ground
truth on SED dataset. (b) and (c) The comparison of PRC by gradually increasing the
layers of segmentation on MSRA 1000 and SED dataset, respectively. In (b) and (c),
the performance of individual SLSM is also included. (Best viewed in color)

Fig. 8. Some visual examples on SED dataset. The first, third and fifth columns
are original images, and the second, fourth and sixth columns are the corresponding
saliency maps. (Best viewed in color)

time is spent performing multi-layer segmentation, producing detected window,
and computing window neighbours (about 80%), and only 20% account for the
actual saliency computation.

Analysis of Parameter Setting and Individual Saliency Map. One factor
affecting the performance is the layers of over-segmentation. Figure 7(b) and (c)
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exhibit the plot of PRC with different number of segmentation layers on the
MSRA 1000 and SED datasets, respectively. It is observed that better perfor-
mance can be achieved along with the increasement of segmentation layers, and
no further improvement after 5 layer segmentations. This demonstrates that our
method performs robustly over a wide range of segmentation layers.

In order to evaluate the contributions of each individual saliency map, the
PRC of SLSM is also included for comparison in Figure 7(b) and (c). The per-
formance of SLSM is already better than most of the competitive models, whose
results are shown in Figure 5. Using BCSM noticeably improves the perfor-
mance for both two datasets, which indicates the importance of measuring visual
saliency using contrast with respect to background regions.

5 Conclusion and Future Work

In this paper, we propose a novel framework for salient object detection based
on two key ideas: (1) using specific location information as top-down prior by
transferring segmentation masks from windows in the training images that are
visually similar to windows in the test image; (2) using the contrast based on
the background candidates in bottom-up process makes our method more robust
than methods estimating contrast on the entire image. Compared with existing
competitive models, the extensive experiments show that our approach achieves
the state-of-the-art results over MSRA 1000 and SED datasets. In the future,
we would like to combine two saliency maps, SLSM and BCSM, with adaptive
weights using learning technique, as well as [47] does.
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